The properties of polyacrylamide conductive hydrogel

Polyacrylamide conductive hydrogels are a type of smart material that combines the electrical conductivity of a conductive polymer with the unique properties of a hydrogel. These hydrogels have various applications, including bioelectronics, tissue engineering scaffolds, and sensors. Here's a general overview of the preparation and properties of polyacrylamide conductive hydrogels:

 

Preparation:

1. Synthesis of polyacrylamide (PAM): Polyacrylamide is often synthesized by free radical polymerization of acrylamide monomers. The reaction can be initiated using a chemical initiator or photochemical initiation.

 

2. Introduction of conductivity: To impart conductivity to the hydrogel, a conductive polymer, such as polypyrrole (PPy) or polyaniline (PANI), is often incorporated into the PAM matrix. This can be achieved through in-situ polymerization or by mixing pre-formed conductive polymer particles with the PAM solution.

 

3. Crosslinking: Crosslinkers are added to the PAM solution to form a three-dimensional network structure, giving the hydrogel its gel-like properties. Common crosslinkers include N,N'-methylenebisacrylamide (BIS) or poly(ethylene glycol) diacrylate (PEGDA). Crosslinking can be achieved by thermal, chemical, or photochemical methods.

 

4. Swelling and purification: The hydrogel is usually immersed in a solvent, such as water, to allow it to swell and remove any unreacted monomers or chemicals. The purification process is often repeated to ensure the removal of impurities.

 

Properties:

1. Electrical conductivity: The incorporation of a conductive polymer into the hydrogel matrix imparts electrical conductivity to the resulting material. This electrical conductivity allows for the transmission of electrical signals or the sensing of electrical stimuli.

 

2. Swelling behavior: Hydrogels have a high water content and can absorb large amounts of water or biological fluids. The swelling behavior of the polyacrylamide conductive hydrogel can be controlled by varying the crosslinking density, pH, temperature, or the addition of specific ions or molecules.

 

3. Mechanical properties: The mechanical properties of polyacrylamide conductive hydrogels can be tailored by adjusting the crosslinking density or incorporating reinforcing fillers or fibers. This allows for the development of hydrogels with specific elasticity, strength, and toughness suitable for various applications.

 

4. Biocompatibility: Polyacrylamide is generally considered biocompatible, and conductive hydrogels based on PAM have been extensively utilized in tissue engineering and biomedical applications. However, the biocompatibility of the hydrogel can be further enhanced by incorporating bioactive molecules or modifying the surface to promote cell adhesion and growth.

 

5. Stimuli-responsiveness: Hydrogels, including conductive ones, can exhibit stimuli-responsiveness when specific chemical or physical conditions change. For example, pH-sensitive hydrogels can undergo volume changes in response to changes in pH, while thermo-responsive hydrogels can change their properties with temperature variations.

 

Polyacrylamide conductive hydrogels offer a unique combination of electrical conductivity and hydrogel properties, making them versatile materials with a wide range of potential applications in various fields.

How to perform turbidity test on polyacrylamide?

To perform a turbidity test on polyacrylamide, you can follow these general steps:

 

1. Prepare a polyacrylamide solution: Dissolve a known amount of polyacrylamide in a suitable solvent, such as water or a buffer solution, according to the desired concentration. Ensure that the polyacrylamide is completely dissolved before proceeding.

 

2. Set up a spectrophotometer: Calibrate the spectrophotometer at the appropriate wavelength (usually in the visible range) according to the instrument's instructions.

 

3. Fill cuvettes: Fill a cuvette or test tube with the prepared polyacrylamide solution. Fill another cuvette with the solvent used for dissolving the polyacrylamide (e.g., water or buffer solution) as a blank.

 

4. Measure the blank: Place the blank cuvette into the spectrophotometer and measure the absorbance of the blank solution using the calibrated wavelength. Note down the reading.

 

5. Measure the sample: Replace the blank cuvette with the cuvette containing the polyacrylamide solution. Measure the absorbance of the polyacrylamide solution using the same wavelength and note down the reading.

 

6. Calculate the turbidity: The turbidity of the polyacrylamide solution can be determined by comparing the absorbance of the sample to that of the blank. The higher the absorbance, the higher the turbidity. This can be calculated using the following formula:

 

   Turbidity = Absorbance_sample - Absorbance_blank

 

Keep in mind that the specific details and requirements of the turbidity test may vary depending on the intended purpose and the properties of the polyacrylamide being tested. It's always a good idea to consult any relevant protocols, standards, or specific procedures provided by regulatory bodies or scientific literature in your field.

What are the applications of polyacrylamide in cosmetics?

Polyacrylamide, a synthetic polymer, has several applications in the cosmetic industry due to its unique properties. Some of the common applications of polyacrylamide in cosmetics include:

 

1. Thickening Agent: Polyacrylamide can act as a thickening agent in cosmetic formulations. It helps increase the viscosity of creams, lotions, and gels, providing a smooth and desirable texture to the products.

 

2. Stabilizer: It is used as a stabilizer in cosmetic emulsions, preventing the separation of oil and water phases. Polyacrylamide enhances the stability of emulsions such as creams, foundations, and moisturizers, ensuring a uniform distribution of ingredients.

 

3. Film-Forming Agent: Polyacrylamide is often utilized as a film-forming agent in cosmetics. It creates a thin film on the skin's surface, providing a protective barrier and assisting in improving the longevity of makeup, such as long-wear foundations, eyeliners, and mascaras.

 

4. Suspending Agent: It can be employed as a suspending agent to prevent the settling of solid particles in cosmetic formulations. Polyacrylamide helps maintain an even distribution of pigments, exfoliating particles, and other ingredients in products like scrubs, serums, and masks.

 

5. Texturizer: Polyacrylamide can modify the texture of cosmetic products. It imparts a silky, smooth, or gel-like texture to various formulations, enhancing the sensory experience for the users.

 

6. Hair Care Products: Polyacrylamide finds application in hair care products such as hair gels, mousses, and styling products. It provides hold, volume, and control to hairstyles, allowing for increased manageability and style retention.

 

It's important to note that the safety and efficacy of cosmetic ingredients, including polyacrylamide, are regulated by various authorities, and manufacturers must adhere to specific guidelines and standards to ensure consumer safety.

A Introduce of the application fields of polyacrylamide in China and their respective proportions

Polyacrylamide (PAM) is widely used in China, and its usage ratio changes dynamically according to industry demand and technological development. The following is a detailed analysis of the main application areas and their ratios, combined with the latest industry data and development trends:

 

I. Main application areas and ratios

1. Oilfield exploitation (about 81%)

  • Application scenarios: As an oil displacement agent and drilling mud conditioner, it is used to improve crude oil recovery (tertiary oil recovery technology). Domestic Daqing, Shengli and other oil fields have significantly improved crude oil recovery by injecting PAM aqueous solution to improve the oil-water flow rate ratio.
  • Technical features: High molecular weight PAM can increase oil displacement capacity and reduce mining costs, especially in low permeability reservoirs.

 

2. Water treatment (about 9%)

  • Application scenarios: Mainly used for urban sewage treatment (sludge dehydration), industrial wastewater treatment (such as printing and dyeing, electroplating wastewater) and drinking water purification. As a high-efficiency flocculant, PAM can accelerate the sedimentation of suspended particles and reduce sludge volume.
  • Growth trend: As environmental protection policies become stricter, the demand growth rate in the water treatment field is the fastest, and it is expected that the proportion will continue to increase in the future.

 

3. Papermaking (about 5%)

  • Application scenarios: As a retention aid, filter aid and dry enhancer, it can improve paper strength, reduce fiber loss, and be used for papermaking wastewater treatment. Anionic PAM can improve filler retention and reduce production costs.
  • Market potential: The domestic papermaking industry has a strong demand for PAM, especially in the production of high-end paper products.

 

4. Mines (about 2%)

Application scenarios: used for mineral processing wastewater treatment, coal washing wastewater sedimentation and tailings concentration. PAM recovers useful mineral particles through flocculation to reduce resource waste.

 

5. Other fields (about 3%)

  • Agriculture: as a soil water retainer and fertilizer slow-release agent, it improves crop drought resistance.
  • Textile printing and dyeing: used for wastewater treatment and fabric finishing to reduce dye residues.
  • Medicine and building materials: have specific applications in drug separation, gypsum reinforcement and other fields.

 

II. Industry development trend

The fastest growth in water treatment and papermaking: driven by environmental protection policies and industrial upgrades, it is expected that the proportion of water treatment will exceed 10%, and the annual growth rate of demand in the papermaking field will reach 8%.

 

Oilfield exploitation is still the core market: Although tertiary oil recovery technology is mature, the oil industry's reliance on PAM is difficult to replace in the short term and will still dominate in the future.

Emerging application expansion: Agricultural water retaining agents, highly absorbent materials and other sub-sectors are gradually emerging and may become future growth points.

 

Regional and enterprise distribution

  • Production concentration: 53% of domestic PAM production capacity is concentrated in East China (such as Shandong and Jiangsu), and major companies include PetroChina Daqing Refining and Chemical, Beijing Hengju, etc.
  • Technology upgrade: New processes such as microbial catalysis improve product purity and promote the localization of high-end PAM (such as ultra-high molecular weight type).

 

If you need more complete industry data or specific cases, you can further refer to other sources.

What are the specific steps for polyacrylamide dissolution turbidity test?

Preparation:

Instruments: Prepare a 721 spectrophotometer (or other spectrophotometers that meet the requirements), an electronic balance, a stoppered conical flask, a magnetic stirrer, a thermometer, a volumetric flask, etc.

 

Reagents:

  • Polyacrylamide (HPAM) powder, determine its molecular weight, degree of hydrolysis and other parameters.
  • Sodium hypochlorite (NaClO) solution: Use analytical grade sodium hypochlorite and prepare a sodium hypochlorite solution with a weight concentration of 1.31% with distilled water.
  • Acetic acid (CH₃COOH) solution: Use analytical grade glacial acetic acid and prepare an acetic acid aqueous solution with a concentration of 5mol/L with distilled water.

 

Sample dissolution:

  • Use an electronic balance to accurately weigh a certain mass (such as 1g) of polyacrylamide sample.
  • Add the weighed sample to a stoppered conical flask containing an appropriate amount of distilled water (such as 100ml).
  • Place the conical flask on a magnetic stirrer, set a certain speed (such as 200 rpm) for stirring, and use a thermometer to monitor the solution temperature. Record the time from the start of stirring to the complete dissolution of polyacrylamide, and observe whether the solution has lumps, turbidity, etc. during the dissolution process.

 

Turbidity test:

  • Use a pipette to transfer a certain amount (such as 5ml) of dissolved polyacrylamide solution to a new clean volumetric flask.
  • Add a certain amount (such as 2ml) of acetic acid solution to the volumetric flask to make the solution acidic.
  • Then add a certain amount (such as 2ml) of prepared sodium hypochlorite solution. At this time, polyacrylamide reacts chemically with sodium hypochlorite in the acidic solution to generate insoluble chloramine, making the solution turbid.
  • After shaking quickly, place the volumetric flask in an environment with a set temperature (depending on the experimental requirements, generally 18-25℃) to react for a certain time (such as 25min).
  • After the reaction is completed, the solution is transferred to a cuvette and placed in a spectrophotometer to measure its absorbance at a specific wavelength (such as 472nm). The absorbance value can indirectly reflect the turbidity of the solution.

 

Result recording and analysis:

Record the absorbance value obtained for each measurement. If multiple sets of parallel experiments are performed, calculate the average value and deviation.

 

According to the pre-drawn standard curve of the relationship between turbidity value and polyacrylamide concentration (under the optimal test conditions, use polyacrylamide solutions of different known concentrations according to the above steps, with absorbance as the ordinate and concentration as the abscissa), the measured absorbance value is used to determine the concentration of polyacrylamide in the sample or evaluate the dissolution turbidity. If the turbidity of the dissolved solution is abnormal, the cause needs to be analyzed, such as whether the dissolution is insufficient, resulting in undissolved particles affecting the turbidity, or the reaction conditions are not well controlled, etc.

What is the development trend of the polyacrylamide industry in the next ten years?

The polyacrylamide industry has broad development prospects in the next decade, but it also faces some challenges. The following is a specific trend analysis:

Market size growth

Globally, the global polyacrylamide market size is US$5.734 billion in 2023, and is expected to reach US$7.972 billion by 2030, with a compound annual growth rate of 5.19% from 2024 to 2030.

The growth trend of the Chinese market is also relatively obvious, with a compound annual growth rate of 5.51% from 2019 to 2023, and an estimated compound annual growth rate of 5.88% from 2024 to 2030.

Application field expansion

Water treatment field: The global water shortage problem is increasing day by day, and the demand for sewage treatment and reuse continues to rise. As a high-efficiency flocculant, polyacrylamide can significantly improve the efficiency of sewage treatment, and its application in industrial wastewater treatment, urban sewage treatment, drinking water treatment, etc. will continue to expand. In addition, the demand for polyacrylamide in emerging fields such as seawater desalination and brackish water desalination is also expected to increase.

Oil extraction field: The International Energy Agency predicts that by 2030, the proportion of tertiary oil recovery in the world's total oil production will increase from the current 3% to 15%-20%. Polyacrylamide plays an important role in improving crude oil recovery in the middle and late stages of oil extraction, especially the promotion of polymer flooding and ternary composite flooding technology, which will further increase its demand in this field.

Other fields: In the papermaking industry, polyacrylamide can improve paper quality, reduce raw material consumption and environmental pollution. With the technological upgrading and environmental protection requirements of the papermaking industry, its application will be more extensive. In the fields of mining, agriculture, textiles, etc., polyacrylamide will also continue to expand its application space and depth with the development of various industries.

Technological innovation and upgrading

Product performance improvement: The research and development of high-performance polyacrylamide products is a future trend, such as the development of products with higher molecular weight, better flocculation performance, stronger salt resistance and temperature resistance to meet the needs of different application scenarios.

Development of green production technology: In the context of stricter environmental protection policies, green production technology will become the development focus of the polyacrylamide industry. Enterprises will increase their investment in research and development of clean production processes, energy-saving and emission-reduction technologies, and reduce energy consumption and pollutant emissions in the production process.

Market competition intensifies

International competition: International large chemical companies such as CJCC Group and Solenis occupy an important position in the global polyacrylamide market with their technological and brand advantages. Domestic enterprises need to continuously improve their technical level and product quality and strengthen brand building to gain a larger share in the international market.

Domestic competition: There are many domestic polyacrylamide manufacturers and the market competition is fierce. With the development of the industry, enterprises with backward technology and small scale will gradually be eliminated, and the industry concentration will further increase.

Favorable policy environment

Industrial policy support: Polyacrylamide products belong to the industry fields encouraged by industrial policies such as the "Guidelines for the Development of the Petroleum and Chemical Industry in the 14th Five-Year Plan" and the "Guidelines for Industrial Structure Adjustment (2019 Edition)", which provide policy guarantees for the development of the industry.

Environmental protection policy promotion: Strict environmental protection policies have increased the requirements for wastewater discharge, which has increased the demand for polyacrylamide in the water treatment industry and created market opportunities for the development of the industry.

However, the polyacrylamide industry also faces some challenges. For example, fluctuations in raw material prices may affect production costs and corporate profits, and increasing R&D requirements have placed higher demands on companies' technological innovation capabilities.

What is the position of Anhui Jucheng Fine Chemical Co., Ltd. in China's polyacrylamide industry?

Anhui Jucheng Fine Chemical Co., Ltd. is one of the important enterprises in China's polyacrylamide (PAM) industry. Its industry status can be analyzed from the following key dimensions:

 

1. Capacity and scale advantages

Capacity expansion: According to the 2024 renovation and expansion project, Anhui Jucheng plans to increase the total capacity of polyacrylamide to 150,000 tons/year through two phases of projects. The first phase of the project will upgrade the original capacity from 60,000 tons to 100,000 tons, and the second phase will add 50,000 tons (including 25,000 tons each for cationic and anionic types)5911. This scale makes it one of the top domestic polyacrylamide production capacities.

 

Full industry chain layout: Since 2012, the company has made breakthroughs in the self-production technology of the key raw material of cationic polyacrylamide **acryloyloxyethyl trimethylammonium chloride (DAC)**, achieving 100% self-sufficiency in core raw materials, reducing external dependence, and improving cost control capabilities19.

 

2. Technological innovation and R&D capabilities

Core technological breakthroughs: Jucheng Chemical uses the homopolymerization-copolymerization co-production technology independently developed, achieving technological leadership in the production of anionic polyacrylamide, and improving product quality by optimizing catalyst selection and process control1.

 

Environmental protection and safety certification: Its expansion project has passed the first domestic chemical process safety and reliability demonstration, and is equipped with advanced waste gas and wastewater treatment facilities (such as RTO incineration, multi-stage absorption process, etc.), which meets national environmental protection standards and reflects the technical maturity and compliance79.

 

3. Market position and industry influence

Domestic market share: According to 2022 data, China's total polyacrylamide production is 1.3623 million tons. After the completion of Jucheng's expansion, the 150,000-ton production capacity will account for about 11% of the country's total production capacity, significantly increasing its market share9.

 

Industry competitiveness: In domestic and foreign market reports, Jucheng is listed as one of the main manufacturers in China's polyacrylamide industry, on par with Shandong Baomo, Beijing Hengju, Aisen China and other companies, especially in the field of cationic products with technical advantages210.

 

Downstream application coverage: Its products are widely used in oilfield mining (accounting for 42% of domestic consumption), water treatment (31%), papermaking (13%) and other fields, meeting the personalized needs of large customers such as CNPC and Sinopec910.

 

4. Environmental protection and sustainable development

Green production practice: Through the expansion project, the company introduced environmental protection technologies such as low-nitrogen combustion, bio-trickling filtration, and activated carbon adsorption. The exhaust gas emissions meet the "Synthetic Resin Industry Pollutant Emission Standards", and the wastewater treatment capacity is increased to 1,200 cubic meters/day, which meets the requirements of the circular economy 59.

 

Policy response: As one of the few domestic companies that has achieved a closed loop of the entire industrial chain, Jucheng has reduced its dependence on imports while promoting the industry's transformation to high-end and environmentally friendly, in line with the country's "dual carbon" goals110.

 

5. Industry recognition and future potential

International competitiveness: Although the global market is still dominated by SNF Group (45% share), Jucheng has gradually narrowed the gap with international giants through capacity expansion and technology upgrades, and has occupied an important position in the Asia-Pacific market (accounting for 47% of the world)29.

 

Growth expectations: With the growth of demand in China's water treatment, oilfield mining and other fields, the global polyacrylamide market is expected to reach US$3.598 billion by 2030. Jucheng is expected to further consolidate its industry position through capacity release210.

 

Anhui Jucheng Fine Chemical Co., Ltd. has become one of the leading companies in China's polyacrylamide industry by virtue of its capacity scale, technological autonomy, full industrial chain integration and environmental protection practices. Its renovation and expansion project further strengthened its competitiveness in the field of high-end products, and is expected to achieve greater breakthroughs in domestic and foreign markets in the future.

What is the shelf life of polyacrylamide?

The shelf - life of polyacrylamide can vary depending on several factors:

 

1. Solid polyacrylamide

 - Under normal storage conditions (in a dry, cool, and well - ventilated environment, away from direct sunlight and high - temperature sources), solid polyacrylamide powder or granules generally have a shelf - life of about 2 years. If the storage environment is humid, the product may absorb moisture, which can lead to caking and affect its performance. High temperatures can also accelerate the degradation of polyacrylamide, reducing its effective shelf - life.

 

2. Liquid polyacrylamide

 - Liquid polyacrylamide has a relatively shorter shelf - life compared to the solid form. Usually, in a suitable storage environment (room temperature, protected from light), the shelf - life of liquid polyacrylamide is about 6 months. Liquid products are more prone to microbial contamination, especially in warm and humid conditions. Microbial growth can cause changes in the viscosity and chemical properties of polyacrylamide, reducing its effectiveness for applications such as water treatment or oil recovery.

 

It is not recommended to use polyacrylamide after it expires for the following reasons:

  • Deterioration of flocculation effect: During storage, the molecular chain of polyacrylamide will gradually break and degrade. As time goes by, the molecular weight decreases, which will seriously affect its flocculation performance in water treatment or other applications, resulting in the inability to effectively adsorb and bridge impurity particles, making it difficult for the treated water quality to meet the expected standards.
  • Changes in solubility properties: Expired polyacrylamide may be difficult to dissolve, or the solution may agglomerate and become turbid after dissolution, and it is impossible to form a uniform and stable solution. This will not only affect normal addition and use, but may also clog pipes and equipment, affecting the smooth progress of the production process.
  • Generation of harmful substances: When stored for a long time and under poor storage conditions, polyacrylamide may undergo chemical changes and generate some substances that are harmful to the environment or subsequent use. For example, in drinking water treatment, if expired products are used, these harmful substances may enter the drinking water and pose a potential threat to human health.

Polyvinyl Alcohol Current Market Status and Future Prospects

Polyvinyl Alcohol (PVA) is a versatile polymer with diverse applications in various industries. Its unique properties, such as high tensile strength, good film-forming abilities, and excellent water solubility, make it highly sought after in the market.

 

The market for Polyvinyl Alcohol has grown significantly in recent years, thanks to its wide range of applications. The demand for PVA is driven by its use in sectors such as adhesives, textiles, paper, packaging, construction, and pharmaceuticals. The global market for Polyvinyl Alcohol is expected to witness steady growth due to the increasing adoption of eco-friendly and sustainable materials in various industries.

 

Polyvinyl Alcohol is widely used as a binder in adhesive formulations due to its excellent adhesion properties. Its application in industries such as woodworking, packaging, and labels presents significant growth opportunities. The more commonly used grades are 2488, 0588, 2688, and etc.PVA powder

 

When it comes to the textile industry for various purposes, including sizing agents, warp yarn lubricants, and fiber modification. The increasing demand for eco-friendly textile materials and the growing emphasis on sustainable production methods provide ample opportunities for PVA in this sector. Especially in some developing countries where the textile industry is prevalent. The annual demand for PVA 1788 is extremely huge.

 

With its strong binding capabilities, PVA is extensively used in the paper industry. It enhances the strength and quality of paper products, leading to improved printability and durability. The rising demand for high-performance paper products and the emphasis on recyclability drive the market for PVA in this sector.

 

The development of flexible packaging materials has gained traction in recent years. PVA-based films and coatings offer excellent barrier properties, making them suitable for food packaging and other sensitive products. The growing demand for sustainable and recyclable packaging solutions presents opportunities for PVA-based materials. PVA water-soluble film is also widely used in demoulding and construction industries.

 

The future of Polyvinyl Alcohol looks promising. As industries continue to prioritize sustainability and environmental concerns, PVA's biodegradability and non-toxic nature make it an attractive choice. Additionally, ongoing research and development efforts aim to enhance the properties and expand the application scope of PVA, opening doors for novel uses in areas such as biomedicine, food, cosmetics, and 3D printing.

 

Website: www.elephchem.com

Whatsapp: (+)86 13851435272

E-mail: admin@elephchem.com

ElephChem Holding Limited, professional market expert in Polyvinyl Alcohol(PVA) and Vinyl Acetate–ethylene Copolymer Emulsion(VAE) with strong recognition and excellent plant facilities of international standards.

PVB Resin Market Status and Development Prospects

Polyvinyl butyral (PVB) is a highly versatile and widely used polymer in various industries. It finds extensive application in the automotive, architecture, and photovoltaic industries, among others.

 

In the automotive sector, PVB is used as an interlayer PVB films in laminated glass, providing enhanced safety and sound insulation. In the architectural field, PVB is utilized in safety glass, offering protection against impact, UV radiation, and break-ins. Additionally, the photovoltaic industry employs PVB as a critical component in solar cell encapsulation, ensuring durability and efficient energy conversion.

 

The PVB market has witnessed substantial growth in recent years, driven by increasing demand for safety and energy-efficient solutions across industries. In the automotive sector, stringent safety regulations and rising consumer awareness have boosted the adoption of laminated glass, thereby driving the demand for PVB. Similarly, the growing emphasis on sustainable construction practices has fueled the demand for PVB in the architectural industry, where energy-efficient glazing solutions are sought after.

 

Moreover, the expanding solar energy sector has presented opportunities for PVB in photovoltaic applications. The advancements in solar cell technology and the shift towards renewable energy sources have increased the demand for PVB as a reliable encapsulation material.

 

The future of the PVB market looks promising, with several factors contributing to its growth. The increasing focus on safety and environmental sustainability will continue to drive demand for PVB in automotive and architectural applications. The growing urbanization and infrastructure development across regions also present significant opportunities for the PVB market.

 

Furthermore, advancements in PVB technology, such as the development of new formulations and improved performance characteristics, are expected to expand the scope of PVB applications. Manufacturers are investing in research and development to enhance the properties of PVB, including its optical clarity, adhesion, and resistance to yellowing over time.

 

Website: www.elephchem.com

Whatsapp: (+)86 13851435272

E-mail: admin@elephchem.com